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This paper presents investigations of a model of a force system proposed 
by Ishlinskii in [l-41 which acts on a material system moving close to 
earth’s surface. Simultaneously with the new method Ishlinskii introduced 
new definitions of a local vertical and of a horizontal plane which 
differ from the conventional definitions. Consequently, the results pre- 
sented in the above mentioned papers require special explanations. 

In this paper the flattening of the earth is taken into account, the 
differential equations of motion of a horizontal gyrocompass are con- 
structed and the conditions under which the instrument will show the 
true local vertical and the true meridional plane are determined. 

1. We shall investigate the motion of a particle in the Ox,y,zl co- 

ordinate system which translates in an inertial reference frame while 

the point 0 moves arbitrarily on the earth’s surface. lhe force Q which 
acts on a particle in the Oxlylzl system can be represented by two equi- 
valent expressions 

Q = P - mw* (1.1) 
Q=F-mw (4.2) 

Here m is the mass of the particle, P = mg is the gravity force, 

which is the resultant of the earth’s gravitational attraction force F 
and the centrifugal force mw,, where we is the translational accelera- 

tion of the point 0 caused by the earth’s rotation. l’hus 

P= F- mw, (1.3) 

‘he vector w* is the sum of two vectors wr and wc, where wr is the 

acceleration of the point 0 in its motion relative to earth’s surface, 
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and wc is the Coriolis acceleration 

w* = w, $- WC (1.4) 

and w is the acceleration of the point 0 with respect to the inertial 

system 

w = we + w, + WC (1.5) 

Direct measurements on earth’s surface cannot determine either the 

magnitude or the direction of the gravitational attraction force F. This 

direction does not coincide with the local vertical and the assumption 

that it is pointing toward the earth’s center is only a first approxima- 
tion c5-71. The gravity force P = mg = F - mwe is being measured directly 

and the force F is not needed for its determination. The force P is 

directed along the local vertical and its projection on the horizontal 

plane equals zero. For these reasons, when due to conditions of a prob- 
lem the motion must be referred to the local vertical and the horizontal 

plane, it is customary to use formula (1.1). 

In the years 1956 and 1957 Ishlinskii proposed in [l-41 the use of 

formula (1.2) instead of (1.1); he assumed besides the sphericity of the 

earth and that the gravitational attraction force F is directed toward 

the earth’s center along its radius. Under these assumptions Ishlinskii 

obtained many results on the equilibrium of a physical pendulum, on the 

behavior of complicated gyroscopic systems and on the systems of inertial 

navigation [l-4,81. In recent years a number of papers appeared by other 

authors, for example [9-141, who used similar assumptions. 

In order to appreciate properly the new method and the results ob- 

tained from its application, it is necessary to examine certain ideas 

used by the authors of all these papers, without unduly stressing that 

the definitions in [l-41 diff er from the conventional ones. 

The local vertical, or the true vertical, is understood to be the 

line coinciding with the plumb line. The local vertical coincides also 

with the normal to the earth’s surface (assuming that the earth is a 

geoid*). ‘lhe horizontal plane is perpendicular to the local vertical. 

l In most books on theoretical mechanics it is assumed for simplicity 

that the earth is a sphere whereas the local vertical is always de- 

fined as Coinciding both with the plumb line and the direction of the 

gravity force P = mg = F - mw,. Without explaining the shape of the 

earth this inconsistency may lead to the wrong conclusion that the 

local vertical does not coincide with the normal to the earth’s sur- 

face. The best explanation of this is in Sommerfeld [151. 
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The line between a point on the earth’s surface and the earth’s center 

will be called pseudovertical and the plane perpendicular to it pseudo- 
horizontal plane. If the earth were a sphere then the pseudovertical 

would coincide with the normal to the earth’s surface and the pseudo- 

horizontal plane would coincide with the tangent plane. In Fig. 1 the 

geoid is drawn by a continuous ellipse-like curve, whereas the hypo- 

thetical spherical earth is drawn by the broken line; 5 is the true 

vertical, 5 ’ is the pseudovertical, q is the horizontal plane, q’ is the 

pseudohorizontal plane. 

Fig. 1. 

‘In the first approximation the 

angle v between the vertical and the 

pseudovertical equals 

where U is the angular velocity of 

earth’s rotation, R, is the principal 

radius of curvature represented by the 

segment 02 (Fig. 1 and formulas (2.3)), 

g is the gravitational acceleration, 

9 is the geographical latitude. 

It is assumed in [l-4,81 that the 

horizontal component of the gravity 

force F equals zero, therefore instead 
of the horizontal plane and the true vertical there are used in these 

papers the pseudohorizontal plane and the pseudovertical. Consequently, 

when all the requirements and conditions obtained in [2-41 for a gyro- 

vertical and a horizontal gyrocompass are rigorously satisfied, these 

instruments should indicate not the horizontal but the pseudohorizontal 

plane. In [23, in particular, it is stated that the xy-plane which is 

fixed in the gyroframe remains horizontal during all manoeuvres of a 

ship. whereas in reality the word “horizontal” should be replaced by 

pseudohorizontal. 

In the inertial navigation and in the theory of gyroscopic instru- 

ments the exact meaning of the horizontal plane and the local vertical 

concepts has fundamental importance for the following reasons: (1) If an 

accelerometer is in the pseudohorizontal plane and the base remains sta- 

tionary relative to the earth, then it will show accelerations equalling 

l/2 R,U2 sin 29 which are being determined from the horizontal component 

of the centrifugal force caused by the earth’s rotation. (2) The angle v 
can be as large as 8’ which for many gyroscopic systems is prohibitively 
too large. (3) It is known that in the position of dynamic equilibrium 

the angle between the axis of a gyrocompass and the true horizontal 



306 D.R. hlerkin 

plane p, is not zero. The problem of a gyrocompass is to make the angle 

Br vanish. In a gyrocompass with period equalling the M. Schuler period, 

the angle p, on a stationary base is exactly given by the right-hand 

term in (1.6) (see, for example, El61 ), which means that the axis of 

such a gyrocompass shows the pseudohorizontal plane. This occurs also in 

Ishlinskii’ s [21 horizontal gyrocompass, therefore these two instruments 

must in principle perform the same function and they may differ only in 

errors peculiar to their construction. 

It is clear now why we must explain the accepted terminology and the 

results obtained when we use the assumptions of sphericity of the earth. 

of the direction of the gravitational force F, and chiefly of the ex- 

pedience of expressing the force Q by formula (1.2). For this reason, in 

order to avoid possible misunderstandings and errors, which can arise 

from using such common concepts as the horizontal plane, the local 

vertical, the horizontal velocity component etc., we shall regard in the 

future the motion of a particle or of a system as being referred to the 

true vertical and true horizontal plane. We shall assume also, as is 

done in the classical textbooks on mechanics [15,17-191, that the force 

Q must be expressed by formula (1.1). 

o We shall consider first the problem of kinematics of a particle 

movZg on the earth’s surface. ‘Ihe earth is assumed to be a geoid on 

which normals to the surface coincide with the direction of the gravity 

force P = mg. ‘Ihe parameters which determine the dimensions and the 

shape of the geoid are 

a = 6378.4 km, 
a-b 1 

a = - = 296.3 a (2-l) 

where a is the equatorial radius and b is the half distance between the 

poles. 

To first order accuracy in a, the surface of the geoid can be approxi- 

mated by the ellipsoid of Clairaut, where the eccentricity e of a 
meridian equals 

(2.2) 
From now on we shall regard the surface of the earth as being a 

Clairaut ellipsoid and in all expansion in powers of the small parameter 
a (or e2) we shall keep only first order terms. 

The principal normal sections of an ellipsoid of revolution through 

the point 0 are the plane of the first vertical and the meridional plane. 
‘Ihe corresponding principal radii of curvature are given by the equations 

R2 = 
a (1 - e2) 

(1 - e2 sin* cp)” 
(2.3) 
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where 0 is the geographical latitude. The first principal radius of 

curvature (Fig. 1) is represented by the segment OC and the second one 
is the radius of curvature of the meridian. Let us mention the easily 
derived and useful identity 

a {RI co.5 cp) 
--=--Rssincp 

arp 
(2.4) 

We shall introduce now the geoGraphically oriented coordinate system 

$n!G (the l-axis is along the true vertical pointing up, the i_ and q 
axes are horizontal, the $-axis is directed east and the q-axis directed 
north), and denote by uB, uN, UC the 5, q, 3 components of the velocity 

of the point 0 with respect to the earth. Since the point 0 moves on the 
surface of the earth, the components of the velocity vector V of the 
point 0 with respect to the inertial frame of [161 are 

V, = vE + RIU cosq), v, = V&I’ v, = 0 (2.5) 

The time rates of the latitude cp and of the longitude h equal 

cp_z 
I 

j$=-..FE.- 
Rx cos cp 

(2.6) 

The angular velocity of the triad &j is given by the equations 

(2.7) 

lhe simplest way to calculate the components of the velocity vector 
of the point 0 with respect to the inertial reference frame [18] is by 
using the formulas 

Substituting (2.7) in the above equations we obtain 

2L’c z..z V,-v$,tJJ, vE2 
w,=~‘l+~ql WL=r - RI (“” + 2) (2.8) 

Tf we used the equations (2.4) and (2.5) we would obtain 

"EVN 
WE =7 ;, - - 

RI un9 - 2uv, sin Q, 

w, = iNfg- GUI rp -j- 2Uv, sin cp + lJeR, sin cp cos cp (2.9) 

29 VN$ 

WC=-R1-Ra 
- 2vv, cos cp - UV?, cossqi 

In the above expressions the terms containing the angular velocity of 
the earth’s rotation in the second degree are components of the transport 
acceleration we which is caused by the earth’s rotation; the terms 
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containing II in the first degree are components of the Coriolis accele- 

ration WC; finally the terms which do not contain U are components of 

the acceleration wr of the point 0 in its motion relative to the earth. 

Thus the <, q, 5 components of the vector W* determined by (1.4) equal 

yJ*=; 
4 

N +!$--cp + 2Uv,sincp (2.10) 

q* = -pg -2uv,coscp 

Let us denote by V *’ and V*‘, 
t 

respectively the approximate values 

of v,2 and V2 when the terms containing squares of the angular velocity 

of t6e earth’s rotation are neglected 

VE *z = r Ez + 2R,VEU coscp, 

and let us introduce the small, variable 

l.k = e2 cos2 cp 

v*2 = -v-t*2 + v,2 (2.11) 

parameter 

‘lhen, with higher order accuracy in ~1 than the first, 

We shall write down the following two formulas (valid 

specified accuracy) 

Rl 
-= 1$-p, 
RZ 

+2p&6+I 

(2.12) 

we have 

(2.13) 

within the 

(2.14) 

Let us mention that all the formulas which we have already obtained 

and those which will follow can be easily generalized for cases when 

the point 0 has vertical displacements. 

3. In the theory of gyroscopic instru- 

ments we often use a coordinate system in 

which the x”yO-plane is horizontal and 

the y”-axis coincides with the horizontal 

component of the angular velocity of the 

triad <T$ (Fig. 2). By (2.7) the angle ti 

is determined through 

(3.1) Fig. 2. 
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Within the specified accuracy we obtain 

(3.2) 

Let us now derive formulas for the x0, y”, z” components of the velo- 

city V 

V X0 = TIE cos 6 + V, sin fi, V,o = - V, sin 2) + V, cos 6, Vp = V, 

With higher order accuracy than the first we find 

v,o = v, I+_+, vtO = 0 (3 -3) 

(it is useful to mention that the velocity vector V does not coincide 

with the x0-axis, as it does in the case of the spherical earth). 

Similarly, we obtain the x0, y” and z” components of the acceleration 

w* 

In these formulas 6, is the time derivative of the angle fi obtained 

as if the earth’s flattening were absent 

(3.5) 

The x ‘, y” and z” components of the angular velocity oe of the rota- 

tion of the triad x”yozo with respect to the inertial frame of reference 

have the form 

where 

0 = 00 + p 
( 

6, - 2 v+ 00 
) (3.7) 

Here o,, is the value of o when ~1 = 0 
V. 

oo=60++Mcp (3.3) 
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‘Ihe parameter ~1 is small when compared to unity and varies within 

the limits 0<~<0.00675, with p = 0 on a pole. For this reason in 

some cases the x0, y” and z” components of the acceleration w* can be 
calculated sufficiently accurately for practical purposes by the 

formulas 

wp*=~_I& ve 
1 (E - vE**) tea (p 

wYO 
* 

Finally, if in 

obtain the x0, y” 

point moving on a 

= (B, + g$qD) v, WP * = P2 
Rl (3.9) 

the above formulas we delete the superscript *, we 

and z” components of the total acceleration of the 

spherical earth’s surface [21 

v. V” 

w.y = wllo = OJ, &.a = -- 
R (3.10) 

4. We shall calculate now the x0, y” and z” components of the force 

(2 determined previously by (1.1). Since the force P = mg is directed 

along a normal to the earth’s surface we have 

Qp = - mwxo*, Qvo = - mwyo*, QP = - m (g + w*) (4.1) 

where TU 
x0 

*, w 
Y0 

* and w 
z” 

* should be calculated by formulas (3.4). 

If the force Q is obtained from the equation (1.2) as in [l-4,81 then 

its II O, y” and z” components equal 

Qxo’ = - mwxO = - m$‘, QUO’ = - mwyO = - ~(,JJ 

Qp' = - (8' + mwp) = -(F - mf) (4.2) 

(in this case the z” -axis is along the pseudovertical, and the x0 and 

y” axes are in the pseudohorizontal plane). 

In order to avoid mixing up the components (4.1) with the components 

(4.2) the latter are marked by primes. 

It can be easily shown that the horizontal components Q 
xo 

and Q o of 

the force (! may differ substantially from its pseudohorizontal comio- 

nents 0 
-xo 

’ and Q o’. For example when uE = 0 and vN = const we have 

0 
‘X0 

: 0 ’ = 2. IlTe components i) 
‘X0 ‘ZO 

and 0 
‘to 

‘, however, differ very little 

because F = mg and at relatively small velocities (say u Q 50 knots) 

5. We shall derive the differential equations of the precessional 
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motion of a gyroframe using the results obtained by Ishlinskii in [21. 

To construct these equations while relating the motion to the true hori- 

zontal plane, we can replace in the differential equations (40) of [21 

the components of the acceleration w which are given in (3.10) by the 
components of w* which are given by (3.4); besides, the two components 

V/R and o,, of the angular velocity o, of the triad OX~Y~Z~ with respect 

to the inertial frame of reference must be replaced by the corresponding 

expressions ol and o as given by (3.7) and (3.8). After performing the 

indicated substitutions we obtain the desired differential equations 

2Bcos e [(cl + 0) c0s p cos 7 + $sin r + 01 (sin a sin T - cos a sin p cos r)] = 

= ml [- w,.* sin a cos p + wy”* cos a cos p + (g + w,.*) sin /3] - M,’ 

$ (2B cos e) = ml [w,“* (cos a cos r - sin a sin p sin 7) + 

+ wyo l (sin a cos T + cos a sin j3 sin r) - (g + w,.*) cos p sin T] + M,' 

(5.1) 

2Bcos e [- (i + o) cos p sin T + E cos T + 01 (sin a cos T + cos a sin, /3 sin T)] = M, 

In these equations bl,‘, h! ’ and M ’ are supplementary moments which 
can be generated by a special arrangzment; the remaining symbols have 
the same meaning as in [21, while the angles a, p, y differ from the 

corresponding angles in [21 because they are defined in the system 

’ ’ ’ where the x Y 2 2’ -axis does not coincide with the true vertical but 

with the pseudovertical. 

In order to make our gyroframe behave like a gyrocompass it is neces- 

sary to select such values for the moments N, U,‘, M ’ and MZ’ which 

would permit the motion a = p = y = 0. Substituting i = p = y = 0 in 

(5.1) we obtain 

2Bocose= mlw u” +-M j a-9 O=M, 

--f& (2B cos e) = mlw,.* + My’, 
(5.2) 

2Bol sin e = - N 

From where 

2B cos e = 
mlwyO *-_M I 

x I 
0 

M& 
mlwyD* - M,’ 

3 
- 

0 
mlw,,+ (5.3) 

N=-2Bolsine 

The moment $1 ’ is arbitrary, besides, if AI ’ = hl '(E) then N can also x x x 
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be regarded as a function of the angle E because the time t and the 

angle E are related as shown in the first equation of (5.3). 

If the conditions (5.3) are satisfied while the motion is taking 

place and at the initial instant a = p = y = 0, then the gyroframe will 

be in equilibrium with respect to the system xO~‘Z’, showing always the 

true local vertical and the meridional plane (accurate within the course 

correction equalling 6). 

From the equations (5.3) it is easy to obtain the Ishlinskii condi- 

tions. To achieve this we set J1 ’ = 0 and replace the components w l x xo 
and w o* by w o = k and w o = o,,V; besides. we must take into account 

that in the c&e of a sphzre 01 = V/R and o = o,, (formulas (3.7) and 

(3.10)). Substituting these expressions in the conditions (5.3) we find 

(compare with [21) 

M,’ SE 0. 2B cos e’ = mlV. N=- 4Bz sin e’ cos e’ 
RmL 

(5.4) 

Let us repeat that replacing the components of the acceleration w* 

by the components of the total acceleration w means replacing the true 

vertical by the pseudovertical. Therefore under the conditions (5.4) the 

gyroframe will not be showing the horizontal plane (in order not to mix 

up the angles a, p, y, E with the corresponding angles in [21 we have 

written the angle E in (5.4) with a prime). 

The author is grateful to A. I. Lur’e and G.Iu. 

cussions of this work. 
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